

The impact of EXtreme weather events on MINing operations

CERTH CENTRE FOR RESEARCH & TECHNOLOGY HELLAS

A new perspective for the numerical slope stability of surface coal mines due to rainfall

<u>Alexandros Theocharis</u>, Ioannis Zevgolis, Alexandros Deliveris , Nikolaos Koukouzas

Katowice, 4-10-2022

Framework of analysis

Step 1: Current climate conditions from regional data

Step 2: Climate conditions projections (CORDEX)

Step 3: Rainfall consideration for the numerical analysis of slope stability (Finite Element Method)

Theocharis A.I., Zevgolis I.E., Deliveris A.V., Karametou R., Koukouzas N.C. From Climate Conditions to the Numerical Slope Stability Analysis of Surface Coal Mines. Applied Sciences. 2022; 12(3):1538. https://doi.org/10.3390/app12031538

Framework of analysis

Framework of analysis

Current baseline climate conditions from regional historical data

Current baseline climate conditions from regional historical data

10 years of measurements

Projection of future climate conditions using CORDEX

Mean and maximum monthly precipitation projections for 2020-2099

Rainfall and slope stability - FEM numerical model

q=0.8 mm/h q=2.2 mm/h q=3.6 mm/h q=5.0 mm/h q=6.4 mm/h q=9.0 mm/h q=17.0 mm/h

Finite Element model for an open pit slope

 \rightarrow Range of precipitation imposed at numerical models

Rainfall and slope stability – important geotechnical parameters

Parameter	Symbol	Value
Young's modulus	E' (MPa)	50
Poisson's ratio	v' (-)	0.25
Effective cohesion	c' (kPa)	50
Effective friction angle	φ' (°)	25
Dilation angle	ψ (°)	0
SWCC parameter	g _a (m ⁻¹)	0.01
SWCC parameter	g _n (-)	1.3
SWCC parameter	g _l (-)	0.5
Bulk water unit weight	γ _w (kN/m³)	9.81
Unsaturated soil unit weight	γ'(kN/m³)	16
Saturated soil unit weight	γ_{s} (kN/m ³)	18
Void ratio	e _o (-)	0.8181
Residual saturation degree	S _r (-)	0.2
Saturated saturation degree	S _s (-)	1.0
Saturated permeability	k _s (cm/s)	10 ⁻⁴
Horizontal stress coefficient	К _о (-)	0.3333

Rainfall and slope stability – failure surface

Failure surface characterized by large shear strains for the reference slope

Theocharis A.I., Zevgolis I.E., Deliveris A.V., Karametou R., Koukouzas N.C. From Climate Conditions to the Numerical Slope Stability Analysis of Surface Coal Mines. Applied Sciences. 2022; 12(3):1538. https://doi.org/10.3390/app12031538

Deliveris A.V., Theocharis A.I., Koukouzas N.C., Zevgolis I.E. Numerical Slope Stability Analysis of Deep Excavations Under Rainfall Infiltration. Geotech Geol Eng 40, 4023–4039 (2022). https://doi.org/10.1007/s10706-022-02135-4

Rainfall and slope stability – parametric analysis

Slope safety factor variation with rainfall time duration

Conclusions

- A framework for integrating climate projections in the stability analysis of open-pit lignite mining slopes was established.
- This framework was applied to typical slope cross-sections encountered in Greek open-pit lignite mining operations
- For the Greek regions, the recorded rainfall intensities varied between 1 and 9 mm/h. Higher values denoting violent rains (q > 10 mm/h) were also spotted.
- The recorded range of rainfall intensities is not expected to alter significantly in the future, regardless of the postulated emission scenarios.
- According to FEM numerical analysis, soil-water characteristic curve parameters has the greater impact on the reduction rate of the pit slope's safety factor during rainfall.
- The rainfall intensity q showed a modest effect in the rate of safety factor's reduction.

The impact of EXtreme weather events on MINing operations

ΤΕΧΜΙΝ

Thank you for your attention!

theocharis@certh.gr zevgolis@certh.gr koukouzas@certh.gr