

The impact of EXtreme weather events on MINing operations

Case study 3 Effects of extreme infiltration conditions in the southern Ruhr area on pumping and pump management

Christoph Klinger, DMT

Katowice, 04.10.2022

TEXMIN

Hydraulic conditions of deep mining

TEXMIN

Site conditions Southern Ruhr

Groundwater recharge (SPRING Groundwater model code) Distribution of inflows (BoxModel for mines)

 Large proportion of infiltration from the surface

TEXMIN

What is extreme ? Minima or Maxima ?

DMT

- Climatic influenced minewater discharge Ruhr
- Reduction in flow rates in the last decades future trend ?

Mine water pumping

Flow rate 20-60 m³/min

Large flow rates are not the technical challenge

Plan: Submersible pumps Staggered pumping rates 0 - 17 - 34 - 51 - **68 m³/min**

Currently: underground centrifugal pumps Water tank for storage Pumping rate ≈ inflow rate Overall pump capacity **112 m²/min**

Mine water pumping

Interaction with the receiving water

- The discharge maxima follow the discharge maxima in the receiving water
- Intensive discharge of mine water occurs when there is little water flow in the receiving water

TEXMIN

Interaction with the receiving water

Maximum substance concentrations in the receiving water in the summer months

TEXMIN

Interaction with the receiving water

- Very low flow rates in receiving water in very dry summers
- Discharge and pump stops when minimum flow rate in the receiving water is reached
- Consequence: the water level in the mine rises above the approved level

Water management requirements

Adaptation of the mine water pumping to the receiving water conditions

- Homogenization of the mine water discharge
 - Avoidance of discharge stops when there is little water flow in the receiving water
 - Complete relief of the receiving water from salts from mine water (bad for water ecology)
 - Forced rise in mine water
 - Avoidance of maximum delivery rates
 - Increased substance inputs into the receiving water
 - Backup pump operation
 - Operation of 1 2 pumps in phases when there is sufficient water flow in the receiving water
 - Keep water level as low as possible at the beginning of summer
- Only possible with deep water drainage using pumps, no retention space with free outlet

TEXMIN

Measures and planning

Planning of the pump capacity on (future) demand

- Smallest pump < as minimum inflow volume
- Variable pump quantities by speed-controlled submersible pumps
 - Continuity of pump operation

Buffer volume of underground storage

- Pump variety minimum maximum water level as large as possible
- Water level in a level with high mining activity (void volume)
- Consideration of future climatic trends and their impact on mine water and surface water and their interactions

The impact of EXtreme weather events on MINing operations

ΤΕΧΜΙΝ

Contact: **Christoph Klinger** Am TÜV 1 D-45307 Essen <u>Christoph.Klinger@dmt-group.com</u>

Nele Pollmann Am TÜV 1 D-45307 Essen Nele.Pollmann@dmt-group.com